台湾研究团队以独特的磊晶技术,为全球半导体材料带来革命性突破

   日期:2019-07-10     浏览:253    评论:0    
核心提示:7月8日,记者了解到,来自台湾的陈志泰博士为全球半导体材料带来革命性突破,研究团队以独特的磊晶技术,制造氮化镓成长于碳化硅基板这项材料,缺陷比传统方式减少100到1000倍、总磊晶层厚度薄20倍,可承受电压可达1500伏特以上,研究除了登上国际期刊AppliedPhysicsLetters,他与瑞典教授共同创办的半导体材料公司SweGaNAB,今年被瑞典媒体评选为瑞典33大最具潜力新创公司。
   7月8日,记者了解到,来自台湾的陈志泰博士为全球半导体材料带来革命性突破,研究团队以独特的磊晶技术,制造氮化镓成长于碳化硅基板这项材料,缺陷比传统方式减少100到1000倍、总磊晶层厚度薄20倍,可承受电压可达1500伏特以上,研究除了登上国际期刊AppliedPhysicsLetters,他与瑞典教授共同创办的半导体材料公司SweGaNAB,今年被瑞典媒体评选为瑞典33大最具潜力新创公司。
 
  半导体材料是什么?
 
  半导体(semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
 
  半导体材料分类?
 
  半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物(硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。
 
  半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。
 
  传统硅晶半导体因为发展局限面临瓶颈,学界和产业界不断寻找下一代的半导体材料替代,陈志泰表示团队突破传统磊晶技术,寻找到温度、压力和化合物比例的特殊最佳配方,让全世界看到新的可能性,将能用来制作高频高功率电子元件,主要应用于太空与国防等领域,更是未来电动车和5G网路基地台的关键性材料。
 
  陈志泰指出,传统磊晶技术因为异质磊晶结构的晶格不匹配,不同分子间大小差异造成错位,而使材料产生缺陷,传统方式试图加入了很多缓冲层来减少缺陷,因此厚度通常在2000奈米到6000奈米,但是厚度越厚,电阻越大,产生的热就会越多,造成散热较差,而且因为结构缺陷密度高,电压只能承载到650伏特。
 
  陈志泰团队克服许多限制找到新的磊晶成长方式,他指出,团队研发出来的方法,可以有效抑制结构缺陷发生,缺陷比传统的少100到1000倍,几乎完美的缓冲层,让材料厚度只有不到300奈米,比传统方式薄20倍,承载电压可以达到1500伏特以上。
 
  陈志泰说,在碳化硅和氮化镓的合成材料中,他们是全球第一个能把材料做到这么薄,同时结合碳化硅和氮化镓的优势,氮化镓具有很高的电子迁移率,碳化硅则有很好的临界电场且散热好,合成的材料同时能承受高电流与高电压,电压可以涵盖目前任何应用,电流比第二代半导体砷化镓高5倍以上。
 
  研究磊晶技术已经长达15年的陈志泰说,他原本在台湾的台大凝态中心与中央研究院原子与分子研究所,由陈贵贤博士与林丽琼博士领导的实验室进行磊晶技术研究,因为看中瑞典应用面的研究,所以2009年到瑞典林雪平大学(link?pingUniversity)深造,5年前与教授ErikJanzén和OlofKordina一同创办公司SweGaNAB。未来希望跟台湾会有更密切的连结,一同与台湾半导体产业再往前突破。
 
  
 
日期: 2019-07-10
标签: 团队 半导体 半导体材料 革命性突破
 
相关资讯
免责声明
1.本网中刊登的文章、数据的版权仅归原作者所有,原创文章由中实仪信网编辑整合,转载请注明中实仪信网出处。
2.转载其它媒体的文章,我们会尽可能注明出处,但不排除来源不明的情况。网站刊登文章是出于传递更多信息的目的,对文中陈述、观 点判断保持中立,并不意味赞同其观点或证实其描述。
3.如您对文章内容、版权或其他问题持有异议,请与中实仪信网联系。联系邮箱:3383880279@qq.com 联系QQ:
0相关评论

推荐图文
推荐资讯
点击排行
推荐标签
新手指南
采购商服务
供应商服务
交易安全
关注我们
中实仪信会员交流群

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服