浙大海洋学院科研团队采用气球制作成了可用于收集波浪能的多倍频高性能摩擦纳米发电机

   日期:2020-09-18     来源:中国仪器网    浏览:219    评论:0    
核心提示:日前,浙大海洋学院科研团队采用气球制作成了可用于收集波浪能的多倍频高性能摩擦纳米发电机。
  日前,浙大海洋学院科研团队采用气球制作成了可用于收集波浪能的多倍频高性能摩擦纳米发电。可实现三种工作模式(完全接触-分离模式;局部接触-分离模式;往复接触-分离模式)。根据实验测试这种基于水气球的结构设计会大大提升能量转化效率,带来超高的输出性能。

       海洋能源通常指海洋中所蕴藏的可再生的自然能源,主要为潮汐能、波浪能、海流能(潮流能)、海水温差能和海水盐差能。潮汐能、海流能和波浪能为机械能,海水温差能为热能,海水盐差能为化学能。海洋能是一种具有巨大能量的可再生能源,而且清洁无污染,但地域性强,能量密度低。波浪能主要是由风的作用引起的海水沿水平方向周期性运动而产生的能量。

       波浪能是巨大的,一个巨浪就可以把13吨重的岩石抛出20米高,一个波高5米,波长100米的海浪,在一米长的波峰片上就具有3120千瓦的能量,由此可以想象整个海洋的波浪所具有的能量该是多么惊人。据计算,全球海洋的波浪能达700亿千瓦,可供开发利用的为20-30亿千瓦。每年发电量可达9-万亿度。

       波浪能发电是以波浪的能量为动力生产电能。海洋波浪蕴藏着巨大的能量,正弦波浪每米波峰宽度的功率P≈HT kW/m。式中,H为波高,m;T为波周期,s。通过某种装置可将波浪的能量转换为机械的、气压的或液压的能量,然后通过传动机构、气轮机、水轮机或油压马达驱动发电机发电。全球有经济价值的波浪能开采量估计为1~10亿kW。中国波浪能的理论储量为7000万kW左右。

  
       波浪能发电方式数以千计,按能量中间转换环节主要分为机械式、气动式和液压式三大类。

       通过某种传动机构实现波浪能从往复运动到单向旋转运动的传递来驱动发电机发电的方式。采用齿条、齿轮和棘轮机构的机械式装置。随着波浪的起伏,齿条跟浮子一起升降,驱动与之啮合的左右两只齿轮作往复旋转。齿轮各自以棘轮机构与轴相连。齿条上升,左齿轮驱动其轴逆时针旋转,右齿轮则顺时针空转。通过后面一级齿轮的传动,驱动发电机顺时针旋转发电。机械式装置多是早期的设计,往往结构笨重,可靠性差,未获实用。

       气动式通过气室、气袋等泵气装置将波浪能转换成空气能,再由气轮机驱动发电机发电的方式。由于波浪运动的表面性和较长的中心管的阻隔,管内水面可看作静止不动的水面。内水面和气轮机之间是气室。当浮体带中心管随波浪上升时,气室容积增大,经阀门吸入空气。当浮体带中心管随波浪下降时,气室容积减小,受压空气将阀门关闭经气轮机排出,驱动冲动式气轮发电机组发电。

       液压式通过某种泵液装置将波浪能转换为液体(油或海水)的压能或位能,再由油压马达或水轮机驱动发电机发电的方式。波浪运动产生的流体动压力和静压力使靠近鸭嘴的浮动前体升沉并绕相对固定的回转轴往复旋转,驱动油压泵工作,将波浪能转换为油的压能,经油压系统输送,再驱动油压发电机组发电。

       波浪能发电装置是波浪能开发利用的一种重要方式。以安装位置、能量传递方式和振荡浮子个数对点吸收式波浪能发电装置进行了分类。过分析波浪能利用背景,点吸收式波浪能发电技术是波浪能开发利用的一种重要方式。

       纳米发电机基于规则的氧化锌纳米线的纳米发电机,是在纳米范围内将机械能转化成电能,是世界上Z小的发电机。目前纳米发电机可以分为3类。一类是压电纳米发电机,压电纳米发电机是利用特殊纳米材料(氧化锌)的压电性能与半导体性能,把弯曲和压缩的机械能转变为电能的微型发电机。还有一类是摩擦纳米发电机,摩擦发电机利用了两种对电子束缚能力不同的材料,相互接触时得失电子而在外电路产生电流的微型电机。目前主要有四种模式,垂直接触分离,平面滑动式,单电极式,独立层式。第三类为热释电纳米发电机。

       摩擦电发电机一种透明的柔性摩擦电发电机,能依靠摩擦点电势的充电泵效应,借助柔性高分子聚合物材料,成功地把极其微小的机械能转化成为了可供使用的电力。此种发电机在电子产品、环境监测以及医疗设备制造等领域具有巨大的应用潜力。这种微型发电机制造工艺简单,成本低廉,能很方便地进行大规模生产的应用。同时它还具有极好的耐久性和可加工性,可轻松融入其他产品的设计当中。
 
日期: 2020-09-18
标签: 海洋 团队 纳米 发电机 电机
 
相关资讯
免责声明
1.本网中刊登的文章、数据的版权仅归原作者所有,原创文章由中实仪信网编辑整合,转载请注明中实仪信网出处。
2.转载其它媒体的文章,我们会尽可能注明出处,但不排除来源不明的情况。网站刊登文章是出于传递更多信息的目的,对文中陈述、观 点判断保持中立,并不意味赞同其观点或证实其描述。
3.如您对文章内容、版权或其他问题持有异议,请与中实仪信网联系。联系邮箱:3383880279@qq.com 联系QQ:
0相关评论

推荐图文
推荐资讯
点击排行
推荐标签
新手指南
采购商服务
供应商服务
交易安全
关注我们
中实仪信会员交流群

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服